(资料图片仅供参考)
1、为了让数学界的同行对球体公式的推导方法和过程能够进一步了解,免得往后对我(魏德武)产生质疑,现将二种球体推导的方法和过程都一一展示出来:一,第一种从“下而上”不足近似值逼近(比实际值小)准确值推导法:设球的半径为R,半球体高的平分数为n;r1,r2,r3----rn分别为各不同圆柱饼的半径,具体推算步骤如下:根据直角三角形定理,先求出每个圆柱饼的半径得:(1)r1=根号R^2-(R/n)^2,r2=根号R^2-(2R/n)^2,r3=根号R^2-(3R/n)^2-----rn=根号R^2-(nR/n)^2.(2)然后再求出每个圆柱饼的体积之和:V=V1+V2+V3------=πR/n{R^2-(R/n)^2}+πR/n{R^2-(2R/n)^2}+πR/n{R^2-(3R/n)^2}---++----πR/n{R^2-(nR/n)^2}=πR^3/n(1-1^2/n^2+1-2^2/n^2+1-3^2/n^2----+1-n^2/n^2)=πR^3/n{n-(1^2+2^2+3^2--+--n^2)/n^2}=πR^3/n{n-n(n+1)(2n+1)/6n^2=πR^3{1-(2n^2+3n+1)/6n^2}=πR^3{1-(2+3*1/n+1/n^2)/6}=πR^3{1-(1+1/n)(2+1/n)/6}(注:当n取无穷大时1/n趋向于0)得半球的体积V=4/6πR^3后再乘以2。
2、即:整球的体积公式V=4/3πR^3。
3、二,第二种从“上而下”过剩近似值逼近(比实际值大)准确值推导法:设球的半径为R,半球体高的平分数为n;r1,r2,r3----rn分别为各不同圆柱饼的半径,具体推算步骤如下:根据直角三角形定理,先求出每个圆柱饼的半径得:(一),(1)r1=根号R^2-(R-R/n)^2,(2)r2=根号R^2-(R-2R/n)^2,(3)r3=根号R^2-(R-3R/n)^2---++---(n)rn=根号R^2-(R-nR/n)^2,(二)再求出每个圆柱饼的体积之和:V=V1+V2+V3------=πR/n{R^2-(R-R/n)^2}+πR/n{R^2-(R-2R/n)^2}+πR/n{R^2-(R-3R/n)^2}---++----πR/n{R^2-(R-nR/n)^2}=πR^3/n{2/n-(1/n)^2}+πR^3/n{2×2/n-(2/n)^2}+πR^3/n{2×3/n-(3/n)^2}+πR^3/n{2n/n-(n/n)^2}=πR^3/n{2×(1+2+3--+--n)/n-(1^2+2^2+3^2---++-n^2)/n^2}=πR^3/n{n(n+1)/n-n(n+1)(2n+1)/6n^2}=πR^3{(n^2+n)/n^2-(2n^2+3n+1)/6n^2}=πR^3(6n^2+6n-2n^2-3n-1)/6n^2=πR^3(4n^2+3n-1)/6n^2=πR^3{(4+3/n-(1/n)^2)}/6=πR^3(4-1/n)(1+1/n)/6.(注:当n取无穷大时1/n趋向于0)得半球的体积V=4/6πR^3,最后再乘以2,得:整球的体积公式V=4/3πR^3。
4、综上所述:事实证明二种推导结果完全一致,只是前者较为简单,后者更为复杂而已,建议学生还是采用前者更便捷!。
本文分享完毕,希望对你有所帮助。
关键词:
新闻发布平台 |科极网 |环球周刊网 |中国创投网 |教体产业网 |中国商界网 |万能百科 |薄荷网 |资讯_时尚网 |连州财经网 |剧情啦 |5元服装包邮 |中华网河南 |网购省钱平台 |海淘返利 |太平洋装修网 |励普网校 |九十三度白茶网 |商标注册 |专利申请 |启哈号 |速挖投诉平台 |深度财经网 |深圳热线 |财报网 |财报网 |财报网 |咕噜财经 |太原热线 |电路维修 |防水补漏 |水管维修 |墙面翻修 |旧房维修 |参考经济网 |中原网视台 |财经产业网 |全球经济网 |消费导报网 |外贸网 |重播网 |国际财经网 |星岛中文网 |手机测评 |品牌推广 |名律网 |项目大全 |整形资讯 |整形新闻 |美丽网 |佳人网 |税法网 |法务网 |法律服务 |法律咨询 |成报网 |媒体采购网 |聚焦网 |参考网 |热点网
亚洲资本网 版权所有
Copyright © 2011-2020 亚洲资本网 All Rights Reserved. 联系网站:55 16 53 8 @qq.com